29 research outputs found

    An area-optimized N-bit multiplication technique using N/2-bit multiplication algorithm

    Get PDF
    A unique design for an optimized N-bit multiplier is proposed and implemented which utilizes a modified divide-and-conquer technique. The conventional technique requires four N/2-bit multipliers to perform N-bit multiplication, whereas the proposed design uses only one multiplier module in hardware to perform the functionality of four modules. It uses Dadda algorithm in its multiplier module. It has been implemented using Verilog HDL, and a good accuracy of results was observed in simulations which effectively verify its functionality. Design was also synthesized on various FPGAs including Spartan 3E, Virtex-5 and Virtex-7. Performance summary, after place and route, showed that the proposed approach significantly reduces hardware utilization. Furthermore, the proposed design is almost 75% more efficient in terms of resources utilization and operating frequency as compared to the conventional design

    Radiation monitor RADMON aboard Aalto-1 CubeSat : First results

    Get PDF
    The Radiation Monitor (RADMON) on-board Aalto-1 CubeSat is an energetic particle detector that fulfills the requirements of small size, low power consumption and low budget. Aalto-1 was launched on 23 June 2017 to a sun-synchronous polar orbit with 97.4° inclination and an average altitude of somewhat above 500 km. RADMON has been measuring integral particle intensities from October 2017 to May 2018 with electron energies starting at low-MeV and protons from 10 MeV upwards. In this paper, we present first electron and proton intensity maps obtained over the mission period. In addition, the response of RADMON measurements to magnetospheric dynamics are analyzed, and the electron observations are compared with corresponding measurements by the PROBA-V/EPT mission. Finally, we describe the RADMON data set, which is made publicly available.The Radiation Monitor (RADMON) on-board Aalto-1 CubeSat is an energetic particle detector that fulfills the requirements of small size, low power consumption and low budget. Aalto-1 was launched on 23 June 2017 to a sun-synchronous polar orbit with 97.4 degrees inclination and an average altitude of somewhat above 500 km. RADMON has been measuring integral particle intensities from October 2017 to May 2018 with electron energies starting at low-MeV and protons from 10 MeV upwards. In this paper, we present first electron and proton intensity maps obtained over the mission period. In addition, the response of RADMON measurements to magnetospheric dynamics are analyzed, and the electron observations are compared with corresponding measurements by the PROBA-V/EPT mission. Finally, we describe the RADMON data set, which is made publicly available. (C) 2019 COSPAR. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Radiation monitor RADMON aboard Aalto-1 CubeSat: First results

    Get PDF
    The Radiation Monitor (RADMON) on-board Aalto-1 CubeSat is an energetic particle detector that fulfills the requirements of small size, low power consumption and low budget. Aalto-1 was launched on 23 June 2017 to a sun-synchronous polar orbit with 97.4° inclination and an average altitude of somewhat above 500 km. RADMON has been measuring integral particle intensities from October 2017 to May 2018 with electron energies starting at low-MeV and protons from 10 MeV upwards. In this paper, we present first electron and proton intensity maps obtained over the mission period. In addition, the response of RADMON measurements to magnetospheric dynamics are analyzed, and the electron observations are compared with corresponding measurements by the PROBA-V/EPT mission. Finally, we describe the RADMON data set, which is made publicly available.</p

    Aalto-1, multi-payload CubeSat: design, integration and launch

    Get PDF
    The design, integration, testing, and launch of the first Finnish satellite Aalto-1 is briefly presented in this paper. Aalto-1, a three-unit CubeSat, launched into Sun-synchronous polar orbit at an altitude of approximately 500 km, is operational since June 2017. It carries three experimental payloads: Aalto Spectral Imager (AaSI), Radiation Monitor (RADMON), and Electrostatic Plasma Brake (EPB). AaSI is a hyperspectral imager in visible and near-infrared (NIR) wavelength bands, RADMON is an energetic particle detector and EPB is a de-orbiting technology demonstration payload. The platform was designed to accommodate multiple payloads while ensuring sufficient data, power, radio, mechanical and electrical interfaces. The design strategy of platform and payload subsystems consists of in-house development and commercial subsystems. The CubeSat Assembly, Integration & Test (AIT) followed Flatsat -- Engineering-Qualification Model (EQM) -- Flight Model (FM) model philosophy for qualification and acceptance.The paper briefly describes the design approach of platform and payload subsystems, their integration and test campaigns, and spacecraft launch. The paper also describes the ground segment & services that were developed by the Aalto-1 team.</p

    FORESAIL-1 cubesat mission to measure radiation belt losses and demonstrate de-orbiting

    Get PDF
    Abstract Today, the near-Earth space is facing a paradigm change as the number of new spacecraft is literally sky-rocketing. Increasing numbers of small satellites threaten the sustainable use of space, as without removal, space debris will eventually make certain critical orbits unusable. A central factor affecting small spacecraft health and leading to debris is the radiation environment, which is unpredictable due to an incomplete understanding of the near-Earth radiation environment itself and its variability driven by the solar wind and outer magnetosphere. This paper presents the FORESAIL-1 nanosatellite mission, having two scientific and one technological objectives. The first scientific objective is to measure the energy and flux of energetic particle loss to the atmosphere with a representative energy and pitch angle resolution over a wide range of magnetic local times. To pave the way to novel model - in situ data comparisons, we also show preliminary results on precipitating electron fluxes obtained with the new global hybrid-Vlasov simulation Vlasiator. The second scientific objective of the FORESAIL-1 mission is to measure energetic neutral atoms (ENAs) of solar origin. The solar ENA flux has the potential to contribute importantly to the knowledge of solar eruption energy budget estimations. The technological objective is to demonstrate a satellite de-orbiting technology, and for the first time, make an orbit manoeuvre with a propellantless nanosatellite. FORESAIL-1 will demonstrate the potential for nanosatellites to make important scientific contributions as well as promote the sustainable utilisation of space by using a cost-efficient de-orbiting technology.Peer reviewe

    Innovative Power Management, Attitude Determination and Control Tile for CubeSat Standard NanoSatellites

    No full text
    corecore